If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+3y=45
We move all terms to the left:
y^2+3y-(45)=0
a = 1; b = 3; c = -45;
Δ = b2-4ac
Δ = 32-4·1·(-45)
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{21}}{2*1}=\frac{-3-3\sqrt{21}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{21}}{2*1}=\frac{-3+3\sqrt{21}}{2} $
| 4−8x=−4(2x+1) | | 4y+y-y+y-4y=18 | | 2d+4=10+5d2d+4=10+5d2, | | 18-5b=3 | | 10v-(5v+1)=2v+7+4v | | 2g-7=5g-1 | | 5x+3x-7x=14 | | 7x-6+4x-5+3x-5=180 | | 2x^2=3+4x | | 2x+22=11x-87 | | 5(x+5)=5x | | 15b-13b=18 | | y=-450/255 | | 25+13x=150 | | 162-v=219 | | 1.25m+1.5=5.7 | | 11x+3=-4+12x | | 1.25m+1.5=1.7 | | 7s-13=-6s-13 | | u3+11=13 | | u3+ 11=13 | | v-4=2v-1 | | –5−12j=–17j−20 | | 124+124+x+x=360 | | 3/4x+6=7-1/4x+x | | 80=|20a-40| | | 8x-56=-128 | | 24+2y=10y | | -44=3x+4 | | 6q-8=3q+4 | | 3x+23+9x-6+7x-4=180 | | 2x-3x+20=15 |